STAR FTPC and Run V

Terence Tarnowsky
Purdue University

February 23,2005

Outline

• I. FTPC parameters in Run V

• II. Operational Status

• III. Calibration Status

• IV. Summary

FTPC Group

- •Volker Eckardt (MPI)
- •Alexei Lebedev (BNL)
- •Markus Oldenburg (LBL)
- •Jörn Putschke (MPI)
- •Janet Seyboth (MPI)
- •Peter Seyboth (MPI)
- •Frank Simon (MPI)
- •Brijesh Srivastava (Purdue)
- •Terry Tarnowsky (Purdue)

Thanks to:

Michael DePhillips

Lidia Didenko

Eric Hjort

Jerome Lauret

Jeff Porter

• • • • • • •

For invaluable technical support!

Run Parameters

- FTPCs operational for both Cu-Cu and upcoming pp running.
 - Cu-Cu:
 - 200 GeV, 62.4 GeV, injection energy.
 - pp:
 - 200 GeV polarized, 500 GeV (?).
- Based on cluster properties, anodes at 1775 V for 200 GeV Cu-Cu
- Early data taken at 1800 V. Change is mostly transparent to end users.
- Appropriate settings for other energies/species TBD from initial data.

Electronics

- Alexei Lebedev installed protection boards for all FTPC FEEs during summer shutdown.
 - Purpose was to mitigate destructive energy discharge to pad plane during anode trip.
 - All FEEs retrofitted.

Electronics II

Status @ end of Run IV

Status @ start of Run V

Electronics III

- Beam backgrounds very high in this Cu-Cu run fairly frequent anode trips.
- Fewer large scale losses compared to this time in Run IV.
- Electronics more stable and reliable.

Extra Temperature Sensors

- During summer shutdown additional FTPC body temperature sensors installed.
 - Improves detector reliability. Accurate temperature readings are *essential* to reconstruction.
 - New sensors operate on a completely autonomous system (no readout through FTPC RDOs).
 - » Even if original temperature readings are nonfunctioning, new sensors provide temperature readout.

Gain Scan

- Data runs w/ anode voltages ranging from 1725-1825 V.
- Compare cluster and charge distributions.
- Compare cluster r, φ residuals.
- View raw clusters as function of pad vs. time using FTPC Pad Monitor.

Gain Scan II

Laser Calibration

• FTPC uses lasers to check drift velocity, t_0 ,

and $\vec{E} \times \vec{B}$ corrections.

- This requires (bare minimum):
 - Inner and outer straight tracks.
 - One inclined track.

Laser Calibration II

Laser run 6034019, 1200 V

Along with gain, alignment can be adjusted.

Laser run 6048026, 1400 V

Laser Calibration III

- Unlike the TPC, FTPC does not continuous laser runs for calibration.
 - Only need one (minimum) "good" run for calibration purposes.
 - More is always better (of course!)

• Work in progress. Odds of success relatively high.

Transverse Vertex Offset

- Align FTPC x,y vertex position w/ TPC vertex.
 - Requires completed TPC calibration and fixed vertex.
- In Run IV data, a B-field dependent effect led to the calculation of offsets after every field change

Vertex Offset II

• Initial Run IV offset calculated from RFF data only.

Vertex Offset III

- After correcting for each specific B-field configuration, x,y vertex position is OK.
- For Run V, will repeat this procedure.
- Cause of field dependent effect still unidentified, but additional corrections more thorough anyway.

Future Improvements

- Will receive two, 40x70mm SSD modules to install at a fixed position between FTPC body and electronics.
- This absolute position reference will allow independent verification of drift velocity and t₀ measurements.
- SSD group has graciously provided modules and use of their readout electronics.
- Installation planned for Summer 2005.

Summary

- FTPCs are operating well, no major problems to report.
- Some difficulty achieving good laser tracks, but work on alignment will continue.
- Improvements to FEEs and temperature measurement provide valuable extra reliability more useable data!
- Future improvements (such as fixed position SSD modules) will add another level of reliability to calibration process.